Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) fast spin-echo imaging of the ankle: initial clinical experience.
نویسندگان
چکیده
OBJECTIVE Reliable, uniform fat suppression is important. Multiple approaches currently exist, many of which suffer from either suboptimal signal-to-noise ratio (SNR), or the inability to obtain consistent fat suppression around the ankle joint. Our purpose was to test iterative decomposition of water and fat with echo asymmetry and the least-squares estimation (IDEAL) method in combination with fast spin-echo imaging, which is able to achieve reliable high SNR images with uniform fat-water separation. SUBJECTS AND METHODS We compared IDEAL fast spin-echo with conventional fat-suppressed fast spin-echo imaging in 33 ankles in 32 patients. Quantitative measurements of SNR and contrast-to-noise ratio efficiency were made, and qualitative diagnostic image quality and fat-suppression scores were determined. RESULTS We found that the SNR efficiency for both cartilage and fluid was similar for both techniques, and fluid/cartilage contrast-to-noise ratio efficiency was higher with IDEAL fast spin-echo imaging. Fat suppression and diagnostic quality scores using the IDEAL method were superior (p < 0.01) to fat-suppressed fast spin-echo imaging. CONCLUSION IDEAL fast spin-echo imaging is a promising technique for MRI of the ankle.
منابع مشابه
Comparison of IDEAL, MultiPeak IDEAL and Fat-Saturated FSE for Imaging of Osteoarthritis (OA) Knee Patients: Initial Clinical Experience
INTRODUCTION Iterative Decomposition of Water and Fat with Echo Asymmetry and Least-Squares Estimation (IDEAL) is a promising MRI technique for robust fat and water separation (1). It was found with higher fluid/cartilage contrast-to-noise ratio efficiency and fat-suppression quality than FSE imaging in ankle. The goal of this study is to assess image quality, fat suppression and fat-water sepa...
متن کاملIterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL): application with fast spin-echo imaging.
Chemical shift based methods are often used to achieve uniform water-fat separation that is insensitive to Bo inhomogeneities. Many spin-echo (SE) or fast SE (FSE) approaches acquire three echoes shifted symmetrically about the SE, creating time-dependent phase shifts caused by water-fat chemical shift. This work demonstrates that symmetrically acquired echoes cause artifacts that degrade image...
متن کاملIDEAL at 7T in Mice Using Asymmetric Spin Echo and Gradient Echo Acquisitions
An asymmetric spin echo (aSE) technique was developed to produce uniform, robust fat-water separation in mice at 7T using Iterative Decomposition of Water and Fat with Echo Asymmetry and Least-squares estimation method (IDEAL). The aSE technique had superior image quality as compared to gradient echo IDEAL estimation. Both the spin echo and gradient echo IDEAL techniques resulted in more accura...
متن کاملFast decomposition of water and lipid using a GRASE technique with the IDEAL algorithm.
Three-point Dixon techniques achieve good lipid-water separation by estimating the phase due to field inhomogeneities. Recently it was demonstrated that the combination of an iterative algorithm (iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL)) with a fast spin-echo (FSE) three-point Dixon method yielded robust lipid-water decomposition. As an a...
متن کاملPractical Application of Iterative Decomposition of Water and Fat with Echo Asymmetry and Least-Squares Estimation (IDEAL) Imaging in Minimizing Metallic Artifacts
Iterative decomposition of water and fat with echo asymmetry and the least-squares estimation (IDEAL) is a recently developed method for robust separation of fat and water with very high signal-to-noise-ratio (SNR) efficiency. In contrast to conventional fat-saturation methods, IDEAL is insensitive to magnetic field (B0 and B1) inhomogeneity. The aim of this study was to illustrate the practica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- AJR. American journal of roentgenology
دوره 187 6 شماره
صفحات -
تاریخ انتشار 2006